Title: DAC using R-2R Ladder Network.
Aim: To build and study DAC using R-2R ladder network.
Components: Resisters, LEDs.
Equipment's and Miscellaneous: Regulated DC P.S. (0-25V), DMM, Breadboard, Connecting wires etc. Circuit Diagram:

Note: 1. Use $2 R=10 k \Omega$ or any value and $R=5 k \Omega$ can be obtained by connecting two $2 R$ resistors in parallel.
2. Connect series combination of 220Ω resistor and LED between input and ground to see input.

Observation Table: Logic $1=+V_{R}=$ \qquad and Logic $0=$ \qquad

Obs. No.	Digital Input				Equivalent Decimal Number	Analog Output Volts		$\begin{aligned} & \text { Error } \\ & \|X-Y\| \end{aligned}$
	$\begin{gathered} A \\ \left(2^{3}\right) \end{gathered}$	$\begin{gathered} \text { B } \\ \left(2^{2}\right) \end{gathered}$	$\begin{gathered} C \\ \left(2^{1}\right) \end{gathered}$	$\begin{gathered} \text { D } \\ \left(2^{0}\right) \end{gathered}$		Calculated (X)	Observed (Y)	
1.	0	0	0	0	0			
2.	0	0	0	1	1			
3.	0	0	1	0	2			
4.	0	0	1	1	3			
5.	0	1	0	0	4			
6.	0	1	0	1	5			
7.	0	1	1	0	6			
8.	0	1	1	1	7			
9.	1	0	0	0	8			
10.	1	0	0	1	9			
11.	1	0	1	0	10			
12.	1	0	1	1	11			
13.	1	1	0	0	12			
14.	1	1	0	1	13			
15.	1	1	1	0	14			
16.	1	1	1	1	15			

Dr. Deepak R. Patil, Dept. of Electronics, KKHA Arts, SMGL Commerce \& SPHJ Science Senior College, Chandwad. 1.

Calculations:

Analog output voltage is given by

$$
V_{A}=\frac{V_{0} 2^{0}+V_{1} 2^{1}+V_{2} 2^{2}+\cdots+V_{n-1} 2^{n-1}}{2^{n}}
$$

Where, n is Number of bits,
$\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{2}, \ldots \ldots . . \mathrm{V}_{\mathrm{n}-1}$ are Digital input voltage levels corresponding to logic 1 and logic 0.
(Leave enough space for calculations in practical book)
Result: 1. Observed analog output voltage matches with calculated analog output voltage.
2. The graph of analog output voltage versus binary equivalent shows stepwise increase with step size equal to $\frac{V_{R}}{2^{n}} v$ i.e. analog output voltage corresponding to 0001.
(Do not write on Practical Sheet)

Precautions:

1. Always connect ground first and then connect Vcc.
2. The kit should be off before changing the connections.
3. Switch off the kit after the experiment.

Procedure:

1. Calculate analog output voltage for various combinations from 0000 to 1111 of 4-bit R-2R ladder network.
2. Connect the circuit as shown in the diagram.
3. Connect voltages corresponding to logic 1 and logic 0 to the input bit position of $\mathrm{R}-2 \mathrm{R}$ ladder for various combinations from 0000 to 1111.
4. Read analog output voltage of R-2R ladder network for each combination using multimeter.
5. Compare calculated and observed values of analog output voltage corresponding to binary input combination and find the error value.
6. Plot a graph of analog output voltage versus binary number.
