Title: Variable Power Supply using IC 317.

Aim: To study the variable power supply using IC LM317 and its load & line regulation characteristics.

Components: LM 317 (3-Terminal Positive Adjustable Regulator), Resisters (100 Ω, 220Ω), Potentiometer (4.7kΩ), Capacitors (100µF/25V, 1000 µF/25V).

Equipment's and Miscellaneous: Regulated DC power supply (0-25V), DMM, Breadboard, Connecting wires etc.

Circuit Diagram:

Observation Table:

Load Regulation:

```
V_i = V_{NI} = \dots
```

Line Regulation:

$V_i = V_{NL} = \dots$				R _L =				
Sr. No.	Load Resistance (R _L)	Load Voltage, (V₀)	% Load Regulation	Sr. No.	Line voltage, (V _i)	Load Voltage, (V₀)	% Line Regulation	
1.	œ	V=V _{NL}	0	1.		V=V _{HL}	0	
2.				2.				
•	•	•		•		•		
10.				10.				

(Leave enough space for observation table in practical book)

Calculations:

- 1. $V_0 = 1.25 \left(1 + \frac{R_2}{R_1}\right)$
- 2. % Load Regulation = $\frac{V_{NL} V_{FL}}{V_{FL}} \times 100$

Where, V_{NL} = Load voltage with no load current i.e. open circuit voltage.

 V_{FL} = Load voltage with full load current. (Any R_L other than ∞ can be treated as full load.)

S.Y.B.Sc. Practical.

3. % Line Regulation = $\frac{V_{HL} - V_{LL}}{V_{LL}} \times 100$

Where, V_{HL} = Load voltage with high line.

 V_{LL} = Load voltage with low line. (Any V_i other than V_{HL} can be treated as low line.)

(Leave enough space for calculations in practical book)

Result:

- 1. % Line Regulation =
- 2. % Load Regulation =
- 3. It is observed that variable power supply using IC LM317 is more sensitive to line change as compared to load change.

(Do not write on Practical Sheet)

Precautions:

- 1. The applied voltage, current should not exceed the maximum ratings of LM 317.
- 2. Switch off the power supply after the experiment.
- 3. Always be careful when reducing load resistance. Reducing R_L means we are going toward short circuit. Avoid Very small R_L .

Procedure:

- 1. Design the Voltage regulator for fix V_0 i. e. for given V_0 and R_1 , find out R_2 .
- 2. Connect the circuit as shown in the diagram.

For Load Regulation:

- 3. Keep V_i constant at particular value according to design. (Generally at maximum value).
- 4. Make output terminal open i.e. $R_L = \infty$, and note down output voltage i.e. V_{NL} .
- 5. Reduce the R_L in suitable steps and note down V_o .
- 6. Calculate the % load regulation form observation table.
- 7. Plot the graph Output Voltage Vs R_L and % Load Regulation Vs $R_L.$

For Line Regulation:

- 8. Keep R_L constant at particular value. (Generally at maximum value).
- 9. Keep V_i at maximum value and note down output voltage i.e. V_{HL} .
- 10. Reduce the V_{i} in suitable steps and note down $V_{o}. \label{eq:volume}$
- 11. Calculate the % line regulation form observation table.
- 12. Plot the graph Output Voltage Vs V_i and % Line Regulation Vs $V_i.$